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1. Introduction

An obvious feature of most biological populations is that they are distributed in space. It is natu-
ral to ask how the dispersal processes of those populations lead to patterns of spatial distributions,
what sorts of patterns arise from various processes, and why organisms might evolve to disperse in
certain ways. Considerable efforts have been made to use spatial models to address those questions.
In the present article we will examine some spatially explicit population models that are related to
a particular pattern, the ideal free distribution. In its original form the ideal free distribution is simply
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a description of how organisms would locate themselves if they could move freely to optimize their
fitness [17]. A version of the ideal free distribution in continuous space can be derived from a type
of advection-diffusion equation that is based on the assumptions that organisms move upward along
the local gradient of fitness and that fitness varies spatially and is reduced by crowding [14]. We
will consider a variation on that model which also includes random diffusion as part of the dispersal
process. We will show that as the rate of movement up fitness gradients becomes large and/or the
rate of diffusion becomes small, the distribution of organisms predicted by our models approximates
that which would be expected from ideal free habitat selection. Other models where organisms were
assumed to disperse upward along fitness gradients have been studied in [3,4,19]. In [3,4] two-patch
models were used instead of reaction-advection-diffusion models. In [19] the analytic approach and
the questions addressed by the modeling and analysis were different from those in the present paper.

Our analysis is partially motivated by an interest in understanding the evolution of dispersal in
spatially varying but temporally constant environments. In that context it is useful to follow McPeek
and Holt [28] and distinguish between unconditional and conditional dispersal. Unconditional disper-
sal refers to dispersal without regard to the environment or the presence of other organisms. Pure
diffusion and diffusion with physical advection (e.g. due to winds or currents) are examples of uncon-
ditional dispersal. Conditional dispersal refers to dispersal that is influenced by the environment or
the presence of other organisms. It has been shown that in the framework of spatially explicit pop-
ulation models on spatially varying but temporally constant environments with only unconditional
dispersal that evolution favors slow dispersal [16,21,28]. A reason why unconditional dispersal is not
favored is that it leads to a mismatch between the distribution of population and the distribution
of resources. However, for certain types of conditional dispersal, evolution can sometimes favor faster
dispersal if that allows the population to track resources more efficiently [11,12,28]. These conclusions
were obtained by considering models for two competitors that use different dispersal strategies but
otherwise are ecologically identical, and examining the evolutionary stability of the strategies in terms
of invasibility. (A strategy is considered evolutionarily stable if a population using that strategy cannot
be invaded by a small population using a different strategy.) We plan to consider ideal free dispersal
from that viewpoint in future work. To do that, we need to understand well the behavior of a single
species using ideal free dispersal; developing that understanding is the goal of this paper. Further
it is worth noting that dispersal processes that result in patterns embodying certain features of the
ideal free distribution have been shown to be evolutionarily stable in discrete diffusion models; see
[10,26]. However, it should also be noted that in models with temporal variation in the coefficients
or complex dynamics, faster unconditional dispersal may sometimes be favored; see [23,24,28]. Some
of these phenomena and other aspects of the ecological effects of directed versus random movement
and the evolution of dispersal are studied in the context of two-patch models in [3,4].

A key idea underlying the ideal free distribution is that individuals will locate themselves in such a
way as to optimize their fitness. Thus, at equilibrium, all organisms in the occupied part of the habitat
will have equal fitness and there will be no net movement of individuals if the population is constant.
A continuum model that captures those features was introduced in [25]. Suppose that a population
has an intrinsic per capita growth rate m(x) that varies in space but experiences increased mortality
and/or decreased reproductive success due to crowding uniformly throughout its environment. If the
population density is scaled appropriately the local reproductive fitness of an individual at location x
in the presence of conspecifics at density u(x) is given by

fx, u) =m) — u(x).

Let F denote the fitness of organisms in the occupied part of the habitat 2. For a fixed total popula-
tion U the distribution of the population will be given by

. m(x)—F ifm®)>F;
“]lo otherwise,

where F is made as large as possible subject to the conditions
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/u(x)dx:U;
Q
l{xe2: ux)>0}|-F= f m@x)dx —U.

{xe$2: u(x)>0}

The first of these conditions simply requires the total population to be conserved. The second con-
dition is obtained by integrating the previous formula for the density u(x). It can be used to deter-
mine F and the region where u(x) > 0 by viewing it as a constraint and maximizing F subject to that
constraint. In simple cases it is possible to find explicit formulas for F and the region where u(x) > 0
in terms of U; see [25]. A dynamic model which supports equilibrium solutions corresponding to this
formulation was introduced in [14]. That model has the form

ue=—aV-[uVf(x,u)] on 2 x(0,0c0),

with the no-flux boundary condition

u

W:o on 382 x (0, o),

a

where the habitat £ is a bounded domain in RN with smooth boundary 82, n is the outward unit
normal vector on 9842, and o is a positive constant that measures the strength of dispersal up the
fitness gradient.

In the present paper we will consider a variation on the model of [14] that incorporates popu-
lation growth and diffusion along with directed motion up the fitness gradient. It is natural to ask
how population growth interacts with dispersal. It is reasonable to assume that the process of as-
sessing the fitness gradient, imperfect tracking of that gradient, and responses to other aspects of the
environment could lead to some amount of random movement. Also, by incorporating diffusion and
population dynamics into the model, we can put it into a framework that allows us to compare it with
other models that have been studied in the context of the evolution of dispersal [11-13,16,24]. In the
presence of population dynamics, pure ideal free dispersal would be expected to result in an equilib-
rium distribution of the population in which the fitness of each individual will be zero, so that there
will be no further population growth. That would correspond to a population density u(x) = m.(x),
where m(x) denotes the positive part of m(x). If m(x) is interpreted as describing the distribution of
resources, having u = m.(x) would mean that the population perfectly matches the resource density.
We will see that as the tendency of the organisms to move upward along fitness gradients becomes
large such a distribution is approximated by the equilibria of the corresponding model with diffu-
sion. This is in contrast with the behavior of models that incorporate movement up the gradient of
m(x) but no response to crowding. In those models the distribution of organisms tends to become
concentrated near local maxima of m(x) as the rate of movement up the gradient becomes large;
see [12,13].

The model we will consider has the form

U=V [uVu—auVfxu]+ufxu) in 2 x @0, oc0), (1.1)
with no-flux boundary conditions

au af(x,u)
an ol an

=0 on 3£ x (0, 00), (1.2)

where

fx,u) =m(x) — u. _ (1.3)



3690 RS. Cantrell et al. / . Differential Equations 245 (2008) 3687-3703

Throughout this paper we assume that m € C27(§2) for some 7 € (0, 1) and m is positive somewhere
in £2. The dispersal terms in (1.1) can be written in two different forms, corresponding to two distinct
ways of thinking about their interpretation in the model, namely

UV —aV - uV(m(x) —u)

and

2
v2 (uu + %’-) —aV - uvm).

In the first form, the first term represents ordinary diffusion while the second term represents di-
rected movement up the gradient of fitness. In the second form, the first term represents a version
of nonlinear diffusion where organisms avoid crowding by diffusing more rapidly in the presence of
conspecifics, and the second term represents movement up the gradient of underlying environmental
quality without reference to the presence of conspecifics or their influence on fitness. Models with
nonlinear diffusion terms similar to those occurring in the second form have been used to describe
the distribution of populations that avoid crowding; see [20,30]. Models with ordinary diffusion but
incorporating a tendency to move up the gradient of underlying environmental quality were consid-
ered in [6,11-13,15]. Some related models were considered in [7,19] but the methods and results in
those papers are quite different from ours.

Ultimately we plan to study the evolutionary stability of ideal free dispersal relative to other
dispersal strategies. To do that, we would consider models of two populations that are ecologically
identical but use different dispersal strategies. Such an approach has been used in {11,12,16,24]. Using
this modeling approach in the context of ideal free dispersal would lead to a system of the form of

u=V-[uVu—auVfeu+v)]+ufxu+v) in 2 x(0,00),
ve=V-[vVv —BvVgx,u+v)]+vfx,u+v) in 2 x(0,00), (1.4)

with no-flux boundary conditions

a_u_auaf(x,u+V)=U§_g

v agx,u-+v)
on on an

- B o =0 on a2 x (0, c0), (1.5)
where f is as in (1.3), and g represents part of an alternate dispersal strategy. For example, g =0
would correspond to unconditional dispersal by simple diffusion, g =m would correspond to advec-
tion up resource gradient without consideration of crowding, while g = —(u -+ v) would correspond
to avoidance of crowding without reference to resource distribution. To analyze such a model from
the view point of evolutionary stability, one needs to study the stability of semi-trivial equilibria of
(1.4)—(1.5). To do that requires a detailed knowledge of those equilibria. Understanding the semi-trivial
equilibrium (i1, 0) where i satisfies (1.1)-(1.2) is essential to this process and it is the subject of this
paper.

In the analysis of (1.1)-(1.2) we will use a number of changes of variables. It is not immediately
clear that (1.1)-(1.2) or its equilibrium equation will satisfy a comparison principle. We will want to
use comparison principles, sub- and super-solutions, and related ideas in our analysis. To that end we
will introduce the new variable

W o= ue_(a/u‘)(m"u) R

In other contexts we will also use In(w) as a new variable. For purposes of deriving a priori estimates
we will use the change of variables

2

Z_u
)

+ —U.

RIx®
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If we set u =0 in (1.1) and (1.2), we obtain
up=—aV-[uVfx u)]+ufxu) in 2 x,o0), (1.6)
with no-flux boundary conditions

ua_fgxn,_w —0 on 382 x (0, o). (17)
Eqs. (1.6), (1.7) can be viewed as the model for the ideal free distribution in [14] with an additional
term describing population dynamics, or as a limiting case of (1.1), (12) as u — 0. The model (1.1),
(1.2) can thus be viewed as an approximation of dispersal according to the ideal free distribution in
the presence of population dynamics.

Our first major result is an existence theorem for (1.1), (1.2):

Theorem 1. Suppose that > 0 and o > 0. Then (1.1)~(1.2) has a unique solution u € C 21(82 % (0, 00)) N
C(£2 x [0, 00)).

For the next result, we need to assume that u =0 is linearly unstable. For that to be the case the
principal eigenvalue of the associated eigenvalue problem

V- [uVeg —apVml+me = —A¢ in £2, /L% —-agb%%l— =0 onae (1.8)

must be negative, The existence of a principal eigenvalue for (1.8) can be shown by making a change
of variables. It turns out that if [, m-e@/")™dx > 0, then u =0 is always unstable, but that condition
is not necessary for instability. We discuss linear eigenvalue problems in more detail in Appendix A.
If u =0 is unstable then (1.1), (1.2) will have at least one positive equilibrium:

Theorem 2. If u = 0 is linearly unstable, then (1.1)~(1.2) has at least one positive steady state. In particular,
there exist maximal and minimal positive steady states of (1.1)~(1.2), denoted by u* and u,, such that for any
positive steady state u of (1.1)~(1.2), u, S u < u*in 2.

Theorems 1 and 2 are proved in Section 2.

Our next two results describe the behavior of equilibria of (1.1) and (1.2) as o/ — co. Specifically,
they describe how those equilibria approximate those that would be expected for the model (1.6),
(1.7) for the ideal free distribution in the presence of population dynamics.

Theorem 3. For any positive steady state u of (1.1)-(1.2), u — my weakly in H 1 and strongly in L? as
o/ — oo, Forany given n > 0, if o > n and &t/ — o0, u — my. in C¥ (£2) for some y € (0, 1).

Theorem 4. Suppose that m > 0 in $2. For any given np > 0, if & > 1 and /4 —> oo, then u — m in C2($2).
Moreover,

(i) if /0 — o0 and a —> 00, we have

Jominm

Jom

g_(u_.m)—» —Inm (1.9)

uniformly in $2;



3692 R.S. Cantrell et al. / ]. Differential Equations 245 (2008) 3687-3703
(ii) if o/ —> oo and o — & for some & € (0, o0), then

%W—myaw-mm (110)

uniformly in $2, where W is the unique solution of

ow

aV.-[mVWw]—mw=-mlnm in$2, F

=0 onas. (111)

Theorems 3 and 4 are proved in Section 3.

Once we have characterized the asymptotic behavior of equilibria of (1.1), (1.2) as a/u — o we
can use that information to conclude that for oo/ large and m > 0 the model has a unique positive
steady state which is globally asymptotically stable among positive solutions:

Theorem 5. If m > 0 in 2, then for large o/, (1.1)-(1.2) has a unique positive steady state which is also
globally asymptotically stable.

" Theorem 5 is proved in Section 4.
In Section 5 we discuss the implications of our results and describe how they fit into the more
general context of the evolution of dispersal.
2. Global smooth solutions and steady states
This section is devoted to the proofs of Theorems 1 and 2. The local existence of smooth solutions
follows from Amann’s results [1] for quasilinear parabolic equations with general boundary conditions.
Moreover, by Theorem 3 of [2], in order to ensure the global existence of smooth solutions, it suffices
to establish uniform bounds on solutions in L° norm.
2.1. A priori estimates and global existence
Given any m(x) and u >0, set
w =y . e~ @/mme—u] (2.1)
By the inverse function theorem, we can express u as
u=hx, w).
Then w satisfies the zero Neumann boundary condition and
we = [hw(x, w)] 7 [ue@/ M= Ay 4 qe@/MO-Rg@m  hy. Vw +h(m —h)]. (2.2)

Lemma 2.1. For any positive smooth solution w of (2.2) in £2 x [0, T1, we have

max w< max{mgx w(-, 0), m_gxm}. (2.3)
£2x[0,T] 2 Q

Proof. Choose any € > 0. Let (x{, tf) denote a point where w(xg, t7) = maXg (o 7 W- If tf =0, the
estimate w(x¥, t¥) < maxg w(-, 0) automatically holds. Suppose 0 < tf < T — €. We claim that

h(xg, w(xg, tf)) <m(xg). (2.4)
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To establish our assertion, we consider two cases: (i) x{ € £2. For this case, our assertion follows
from (2.2), Aw(x{, ) <0, Vw(xE, t7) =0, and w(xZ, t7) > 0. (ii) x} € 852. For this case, we argue by
contradiction and assume that h(x¥, w(x§, 7)) > m(x¥). Therefore, there exists an open ball, denoted
by B, with B € £2 x (0, T) and BN32 x (0, T) = {(x%, t¥)}, such that h(x, w(x, t)) > m(x) in B. By (2.2),

we < [hw(x, w)]"1 [ue(“/")(m‘h)Aw + ae@/Wm=h g _p). Vw]
in B. Let (x%*,t}*) denote a point where w(x}*, t5*) = maxg w. If (x{*,tf*) € BN £ x (0, T] then we
obtain a contradiction as in case (i). If x};* € 82 then by the Hopf boundary lemma [29], Vw -n >0
at (x*, t£*), which is a contradiction. Thus, (2.4) must be satisfied.

By (24), u(xg, t3) =hxf, wxg, t5)) < m(xf). Hence,

w(xs, tf) = u(xf, £ )e@/MIMuG—mE] <y (xf, £F) < m(x?) < maxm.
7]
Thus,

_max w<g max{m_axw(., 0). m_gxm}.
Zx[0,T—€) 2 kel

Since € > 0 was arbitrary, it follows that (2.3) must be satisfied. &

Corollary 2.2. For any positive smooth solution u of (1.1)-(1.2) in £2 x [0, T], we have

max u< max{e(‘"/“)[maxﬁ m-ming M max u -, 0), m_gxm}. (2.5)
Zx[0,1] 2 [}

Proof. If maxg, o 1 W < maxg w(:, 0), then

u(x, t)e(a/u)u ®h < @/ )i maxg m—ming m} m_ax[u (x, O)E(a/u)u(x,O)] 1
£

which implies that
u(x, t)y < e@/WImaxg m—ming ml may  (x, 0)
7]
for every (x,t) € 2 x [0, T1. If MaXg o,y W < MaXg m, we claim that maxg, o ;¥ < mMaxg m. Sup-
pose not, i.e., there exists (x*,t*) € £ x [0, T] such that u(x*, t*) > maxg m. Then m(x*) < u(x*,t*).

Hence,

u(x*, %) S ulx*, t*)e@/ W) -mx)] _max w < maxm,
2x[0,T] [,

which is a contradiction. This completes the proof of (2.5). ©
2.2. Monotonicity and steady states

Due to the nonlinear boundary condition, it is not clear whether (1.1)-(1.2) is a monotone system
as the comparison principle may not apply directly. In this connection we first show:

Lemma 2.3. Suppose that uy and u; are two smooth solutions of (1.1)-(1.2). If u1(x, 0) 2 uz(x, 0) in $2, then
ui(x, £) = uax, ) in 2 x (0, 0o). If we further assume that uq s uy, then uq(x, t) > uz(x, t) in £2 x (0, c0).
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Proof. Set w; = u; - e~ (@/Wm—u) j— 1 2 respectively. Then the functions w; satisfy zero Neumann
boundary conditions and (2.2). By the comparison principle [29] (which applies under the zero Neu-
mann boundary condition) we see that wq(x,t) > wa(x,t) in £ x [0, 00). Since hy, is positive, we
have uj(x,t) > uy(x, t) in §2 x [0, co). The rest of the proof is similar and is thus omitted. O

Proof of Theorem 2. We first construct some families of supersolutions and subsolutions for the

steady state problem of (1.1)-(1.2). For the construction of supersolutions, choose any positive con-

stant C such that h(x, C) > m(x) in £2. Set w = C. It is easy to see that for every C > C,
e(@/MIm—h&WI[ A + aV[m — h(x, W)] - VW] + h[m — h(x, W)] <0 (2.6)

in 2. This in turn implies that for every C > C, ii(x; C) := h(x, W) satisfies

V. [uVi—oiVfx 5] +ifx i) <0 in 2 (2.7)
and
g% o onse. (2.8)
on on

To construct subsolutions, we apply the assumption that u =0 is linearly unstable, i.e., the princi-
pal eigenvalue (denoted by A1) of the eigenvalue problem (1.8) is negative. We denote the correspond-
ing positive eigenfunction by ¢1, which is uniquely determined by maxg ¢1 = 1. For any € > 0, set
w = ee~@/MMyp, One may check that w satisfies the zero Neumann boundary condition and there
exists some positive constant € such that for every € € (0, €),

e@/Mm=h@ W[ Aw + aV[m —h(x, w)] - Vw] + h[m — h(x, w)] > 0 (2.9)
in £2. Set u(x; €) = h(x, w). Then, for evergr € < €, u satisfies
V- [uVu—ouVfxw]+ufxu >0 in2 (2.10)
and

§-¥-~agw=0 on 852. (211)
an on
Choosing € smaller if necessary we may assume that u(x; €) < ii(x; C) for x € 2. By the supersolution
and subsolution method for elliptic equations we see that (1.1)-(1.2) has at least one positive steady
state. Moreover, there exist two positive steady states of (1.1)-(1.2), denoted by u, and u*, such that
for any positive steady state u of (1.1)-(1.2) which satisfies u(x; €) < u < ii(x; C) in §2, one has u, <
u<u*in 2.

It remains to show that for any positive steady state u of (1.1)-(1.2), we have u(x; €) < u < ii(x; C)
in £2. We argue by contradiction: if not, we may suppose that there exists some positive steady state
u of (1.1)-(1.2) such that u(%) > ii(x; C) for some % € £2. Set

S={C>C: i(xC)>ux) Vxe 2}.

Note that ii(-; C) is strictly monotone increasing in C. Since limc_, 400 h(%, C) = co uniformly for x €
02, for sufficiently large C, fi(x;C) > u(x) Vx € £2. Hence S is non-empty. As u(®) > ii(%; C), C is
a lower bound of the set S. Therefore, the largest lower bound of S exists, and is denoted as C*.
Moreover, ii(x; C*) > u(x) in £2, and @i(x*; C*) = u(x*) for some x* € £2. Since ii(x; C*) satisfies (2.7)
and u(x) is a steady state of (1.1)-(1.2), u(x; C*) = u(x). Let u;(x,t), i = 1,2, denote the solutions
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of (1.1)-(1.2) with uq(x,0) = u(x; C*) and uz(x, 0) = u(x), respectively. As u(x) is a steady state of
(1.1)~(1.2), uz(x,t) = u(x) for t > 0. Since uq(x,0) > uy(x,0) and uq(x,0) = uy(x,0), by Lemma 2.3
we have uq(x,t) > uz(x, t) = u(x) for t > 0, Since uq(x, 0) is a smooth elliptic supersolution for (1.1)-
(1.2), similar to the proof of Lemma 2.3 we have ui(x,t) < uq(x,0) in 2 for t > 0. This together
with uj(x,t) > u(x) implies that uq(x,0) > u(x) in £2, ie. ii(x; C*) > u(x) in £2, which contradicts
(x*; C*) = u(x*). Hence, for any positive steady state u of (1.1)-(1.2), u(x) < ii(x; C) in £2. Similarly,
we can show that u(x) > u(x; €) in £2. This completes the proof of Theorem 2. [

3. Asymptotic behavior of steady states

In Section 3.1 we establish some a priori estimates for positive steady states of (1.1)~(1.2). These
estimates are then applied in Sections 3.2 and 3.3 to prove Theorems 3 and 4, respectively.

3.1. A priori estimates
Lemma 3.1. For any positive steady state u of (1.1)-(1.2),

minm < u(x)e@/ME®-MK] < maxm (3.1)
7 7]

for every x € £2.
Proof. Set
w = ue—@/m)fxu) (3.2)
Then w satisfies the zero Neumann boundary condition and
uv - [e@MIvw]+ufx,u)=0 in Q2. (3.3)
Let w(x) = maxgz w for some X € £2. Rewrite the equation of w as
UAW+aVf -Vw+wfx u)=0 in 2.
We claim that
m(x) —u(x) > 0. (3.4)
To establish (3.4) we argue by contradiction: Suppose that (3.4) is false. The maximum prin-
ciple yields a contradiction if X € £2, so we must have X € 3§2. Then there exists an open ball,
denoted by B, such that B ¢ £ and 9B N 32 = {x} and m(x) — u{x) < 0 for every x € B. This im-
plies that uAw +aVf.Vw >0 in B. Since w(X) = maxg w, by the Hopf boundary lemma we have

ow/an(x) > 0, which contradicts the boundary condition of w. This proves our assertion.
By (3.4) we have

£2

<u(x)
< m() < maxm, (3.5)
7]
which establishes the upper bound in (3.1). Since the proof of the lower bound is similar, we shall only

sketch it. Let w be defined as in (3.2). Let w(y) = ming w. By the maximum principle, m(y) —u(y) <
0, which implies that w(y) 2 u(y) 2m(y) 2 mingm. 0O
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Corollary 3.2. For any positive steady state u of (1.1) and (1.2),

minm < u(x) < maxm (3.6)
2 2

forevery x € 2.

Proof. If u(X) > maxg m for some X, then m(X) < u(%). This along with (3.1) implies that

u® < u(&)e—(a/u)lm(;'c)—u()'c)J < maxm,
2

which contradicts our assumption u(x) > maxg m. Hence, maxg u < maxg m. The proof for ming u >
ming m is similar and is thus omitted. 0O

Lemma 3.3. For any positive steady state u of (1.1)-~(1.2), jully: < C for some positive constant C which is
independent of « and .

Proof. Multiplying the equation of u by f(x, u) and integrating in £2, we have

u/1Vu|2+a/u|Vf|2+/uf2=u/Vu~Vm.
2

2 2 2

By the Cauchy-Schwartz inequality we see that

-‘szWu|2+a/u|w12+fuf2 < fz‘—/WmP. 37)
2 2

2 2

In particular,

fIVu12</|Vm|2.
2 2

Since u is also uniformly bounded, this proves our assertion. 0

Lemma 3.4. For any n € (0, 1), there exist two constants y € (0, 1) and C > 0, dependent only upon nj and £2,
such thatif o > n and o/ = 1/n, then for any positive steady state u of (1.1)-(1.2), lulley @y < C.

Proof. For any positive steady state u of (1.1)-(1.2), set

2

we U
1= =
2

-+ —u.

R T

Then we can write u = h1(w1), where

[ 2
hl(W1)=—%+ %+2W1-

Hence, wq satisfies
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V- [Vwi — hi(wq)Vm] + (1/a)hy (w1)[m —h1(w1)] =0 in £,
[Vw; —hiy(w1)Vm]-n=0 on 8%2. (3.8)

Note that wy is uniformly bounded above by Corollary 3.2 and bounded below by zero by the
hypothesis of the positivity of u. If we define functions fi(x) = —hi(wq1(x))my(x) and gx) =
(1/a)h1 (w1 (x))[m(x) — h1(w1(x))] we have that || fillo and g are both uniformly bounded for
o 2n and o/ = 1/n. Then the interior a priori Holder estimates for wq follow from standard De
Giorgi-Nash theory for second order linear elliptic operators with divergence form, see Gilbarg and
Trudinger [18, Theorem 8.24]. For Holder estimates near the boundary and for the proof of such
estimates with nonlinear boundary conditions, we refer to Ladyzhenskaya and Ural'tseva [27]. In par-
ticular, such estimates follow from the arguments outlined on pp. 466-467 of [27], Theorem 7.2 and
the remarks thereafter (pp. 94-95), and the proofs of Theorem 6.1 in Section 6 of Chapter 2. Combin-
ing boundary and interior Holder estimates we see that [|[w1|lcx @ <G for some positive constants
y1 € (0, 1) and C; depending only on 7 and £2. By the relation u = h{(w1), applying the inequality

|1 (w1(0) — b1 (w1 ()| € V2|w1(x) — wy ()’)ll/2

for any x, y € £2, we see that luller 2@y S C for some C depending only on n and £2. Set y =14/2,
this finishes the proof of Lemma 3.4. O

The following result is crucial and can be viewed as a non-degeneracy lemma.

Lemma 3.5. For any positive steady state u of (1.1)-(1.2),

f - <Eia) (39)
2

Proof. Let w be defined as in (3.2). Dividing (3.3) by w and integrating in £2, we find that

(/m)f w2
/e(a/u)ff=__lu,/e__l_wl_go

w2
2 2

It is easy to check that ye@/®)Y > (a/u)y? for y >0, and ye @/ > —u /o for every y € R1. Hence,

0> / e@/mf f g / e(a/u«)ff>% / fz—g-lﬂl-

{20} {f <0} {f20}
Therefore,
2
7
[ P<Zial
{F=20}

By Holder’s inequality, we have

172 172
/f+<(f(f+>2) lm”zz(ffz) 22 <Biel o
n 2
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3.2. Proof of Theorem 3
By Lemma 3.3 and the Sobolev embedding theorem we may assume that as o/ — oo, u —> u*

weakly in H! and strongly in L2. By Corollary 3.2, we see that u* e L°(£2). Passing to the limit
in (3.9), we have

/(m-u*)+ =0.
2

Hence, (m —u*)+ =0 ae. in 2, i.e, u*(x) >m(x) a.e. in 2.
Integrating the equation of u in £2, we find

fu(m——u):O.
2

Passing to the limit we have

/u*(u* —m) = 0.
bo)

Since u* > my a.e, we see that u* =my ae. in £2. This shows that as o/u — oo, u — m,. weakly
in H! and strongly in LZ.

Given any 7 >0, if « =2 n and /¢ — oo, by Lemma 3.4 and the compact embedding properties
of Hélder spaces, passing to a subsequence if necessary, u — ii in C”1(£2) for any y; € (0, y). Since
u — my in L?(£2), we see that ii =m... Therefore, u — m.,. in C¥"1 ().

3.3. Proof of Theorem 4
Lemma 3.6. Suppose that m > 0 in §2. Then for any positive steady state u of (1.1)-(1.2), we have

maxg m

o M e S0~ < Emn i (3.10)
forevery x € §2.
Proof. Note that (3.1) can be rewritten as
lnnjs_;nmglnu—kg-[u—m]glnmﬁaxm. (3.11)

This together with Corollary 3.2 implies (3.10). O

Lemma 3.7. Suppose that m > 0 in £2. Then for any positive steady state u of (1.1)-(1.2), if o/ — oo and
o — 00, {1.9) holds, and if ¢ /it — oo and o —> &, then (1.10) holds.

Proof. Set

w=lnu+9—(u——-m).
i
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Then w satisfies

oV -[uvw]+u(nu —-w)=0 in 2, =0. (3.12)

By Lemma 3.6, we see that {|w{|1o(p) is uniformly bounded. Multiplying (3.12) by w and integrating
in £2, we have

afule[2=fuw(lnu——w).

2 2

By Corollary 3.2 and Lemma 3.6, we see that |Vwl 2.y is uniformly bounded. Hence, |wly is

uniformly bounded. Therefore, w — W weakly in H!(£2) and strongly in L2. By Lemma 3.6, u > m
uniformly as a/u — oo. There are two cases for us to consider:

Case 1. o — oo. For this case, w is a weak solution of
- . ow
V.- (mVw)=0 in £, ';ﬁ=0 on 4£2.

This implies that W = C for some constant C. Since Inu — Inm uniformly, by the definition of w, we
see that (a/u)(u—m)— C—Inm in L2. Multiplying the equation of u by «/u and integrating in £2,
we have

fu.f'i(u—m)=0. (3.13)
"

2

Passing to the limit in (3.13) by letting o/t — oo, we find that

Jom-lnm

(==,
Jom

Case 2. o — &. For this case, w — w, where w is the unique solution of (1.11).

By Corollary 3.2, Lemma 3.6 and De Giorgi-Nash estimates, there exists some constant 8 € (0, 1)
such that ||wllcsg, is uniformly bounded. This implies that [lullcsgy is uniformly bounded for
large or/w. Therefore, by elliptic regularity and (3.12), w is uniformly bounded in C!#(2), which
ensures that u is uniformly bounded in C1#(82). It follows from Schauder theory that w is uni-
formly bounded in C2#($2), which implies that u is uniformly bounded in C%#(2). This together
with [lu —m||eo(ey — 0 implies that u — m in C2(2). O

Remark 3.8. For the case «/u — oo and « —> 0, one can use a blow-up argument to show that
w — Inm uniformly, i.e., (a/uw)(u —m) — 0 uniformly.

4. Uniqueness and stability of positive steady state

In this section we show that if m > 0 in £2, then for large a/u, (1.1)-(1.2) has a unique positive
steady state and it is globally asymptotically stable.
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4.1. Uniqueness of positive steady states
Let uy and uy be two positive steady states of (1.1)~(1.2) and suppose that uq £ u;. Without loss

of generality we may assume that uq > uy; otherwise, we can simply replace uy by the maximal
solution u* and u, by the minimal solution u,, respectively. Integrating the equations of u; (i=1, 2)

we have
/u1(m—~u1)=/uz(m—uz)=0-

2 2

Subtracting the two integrals we find

f(u1 —up)(m—uq —uy)=0. (4.1)
I?)

Since u; — m and u —> m uniformly in §2 as o/p— 00 (Lemma 3.6), we see that m—uq —uz — —m
uniformly in £2. Since m is strictly positive in £2, for large o/ we have m —u; —uz <0 in 2. This
along with uy > uy and uq s uy contradicts (4.1).

4.2, Stability of the steady state

This subsection is devoted to the proof of linearized stability of the unique steady state. For the
linearized stability, it suffices to consider the linear eigenvalue problem

V. [uVe —agpV(m—u)+auVe]+ (m—2u)p =—1rp in £2,
[WV$ —apV(m—u)+auVe]-n=0 on ds. (4.2)

We first show that (4.2) has a principal eigenvalue and its corresponding eigenfunction can be
chosen positive. To this end, let g be the unique solution of

Ag+1=0 in £, Vg-n+Kg=0 onds,

where K > 0 is to be determined later.
Let p = g¢. Then p satisfies

V- [+ au)V(p/g) — a(o/g)Vm —u)] + (m—2u)(p/g) = —~r(p/g) in £,

ap
—(m — =0 952, 4.3
+[ ,u+ozu6n< u)]p on (4.3)
Choose K large so that
-2 Pm_w>o
Mu+ou on

on 8£2. It follows that the operator in (4.3), with a term —Cp/g added if necessary, will satisfy the
strong maximum principle. By the Krein-Rutman Theorem (see [9, Section 2.5]) we see that (4.3)
has a principal eigenvalue, denoted by Aq, which is also real; moreover, its corresponding eigenfunc-
tion can be chosen positive. Let p; denote the positive eigenfunction of A1 uniquely determined by
maxg p1 = 1. Clearly, Aq is also the prmc1pal eigenvalue of (4.2) with corresponding eigenfunction

$p1=p1/g>0in 2.
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Next we show that A1 > 0 if a/u is sufficiently large. Integrating (4.2) with A = A1 and ¢ = ¢4
in £2, we have

Mr[¢1=!(2u—m)¢1-

Since u — m uniformly as &/u — oo (Lemma 3.6), we see that 2u — m — m uniformly in £2. Hence,
for large o/, 2u —m is positive in §2. This together with the positivity of ¢1 implies that A > 0 for
large o/ L.

The global asymptotic stability of the steady state now follows from the monotonicity of (1.1)-(1.2),
uniqueness of the steady state solution, and supersolution and subsolution methods.

5. Discussion

The results in this paper show that in temporally constant but spatially heterogeneous environ-
ments reaction—-advection—diffusion models incorporating a tendency of organisms to move up the
gradient of fitness have stable equilibria that can approximate the spatial distribution predicted by the
ideal free distribution. The approximation improves as the strength of the tendency to move up fit-
ness gradients increases and/or the amount of random diffusion decreases. The dispersal mechanisms
in the models require only local information about the environment; in particular, they do not require
that organisms have complete global knowledge of the environment to achieve an approximation to
the ideal free distribution. The immediate biological significance of approximately ideal free dispersal
is that it leads to a population distribution where the population density approximately matches the
availability of resources. This differs from both unconditional dispersal by random diffusion and con-
ditional dispersal where organisms tend to move up gradients of resource density without reference
to crowding effects. Both of those sorts of dispersal lead to population distributions where the den-
sity overmatches resource availability in some locations but undermatches it in others. This fact is the
essential reason why there is selection for slow dispersal in models with purely diffusive dispersal,
because for such models the only way for the equilibrium population density to approximately match
the distribution of resources is for the diffusion rate to go to zero; see [21]. It is also the reason why
too strong a tendency to move up resource gradients without regard to crowding effects can some-
times make a population subject to invasion by another population using a different strategy, as in
[12,13].

We expect that because approximately ideal free dispersal allows a population to approximately
track the distribution of resources it is often likely to be advantageous relative to other sorts of dis-
persal. Part of the motivation for the analysis in this paper is to derive results that can be used to
address that conjecture in the same sort of framework used in [11-13,16,24]. Specifically, we plan to
study models for two competitors that are ecologically identical in all respects except for their dis-
persal strategies and where one competitor uses an approximately ideal free strategy while the other
uses some different strategy from the viewpoint of evolutionary stability. A strategy is considered
evolutionarily stable if a population using it cannot be invaded by an otherwise similar population
using a different strategy, so determining the evolutionary stability of one strategy relative to another
requires that we determine the invasibility of a population using that strategy. This is the essential
idea behind the modeling in [11-13,16,24]. In the context of spatially discrete models, strategies that
have some features of ideal free dispersal have been shown to be evolutionarily stable; see {10,26].
To perform a similar analysis for approximately ideal free dispersal strategies in continuous space we
will need the sort of detailed information about the equilibria of approximately ideal free models that
we obtain in the present article. Thus, our results give a rigorous mathematical analysis of some of
the sorts of mechanistic models for the ideal free distribution developed in {14] and lay a foundation
for comparing those models with other sorts of dispersal models from the viewpoint of evolutionary
stability.
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Appendix A
We discuss the principal eigenvalue, denoted by A4, of the linear eigenvalue problem

V- [uVe —apVm]+m¢o =—r¢d in £, u%‘ﬁ-—a«f)%g:O on 4s2. (A1)

Recall that the sign of A, determines the linearized stability of the equilibrium u = 0 of (1.1), (1.2),
with instability occurring if A1 < 0.
The change of variable

converts the linearized problem (A.1) into a variational form, i.e., ¥ satisfies

9
uV - [e@/Emyy] 4 me @My = _pe@/BMmy in @, 3‘5 =0 ondf. (A2)

Hence A can be characterized as

(a/uym 2 __ (a/u)m 2

e v e m

A= inf fg a l w(oll/mmfﬂz L4 .
(yeW12: y30) Jae )

(A3)

For the case [, me@/H™ >0, it follows from (A.3) that:
Lemma Al If [, me@/")™ > 0 and m 0, then A1 <O.

For the case fS2 me‘@/m < 0, the condition for determining the sign of A; is less explicit. It turns
out that the sign of A1 is connected with the quantity

- Jo e/ Y
Aot/ p,m) = ‘/1/21; W

>0,

where

S = {1// e WT'Z(Q): /e(“/")mmwz > O}.
2

The quantity A.(a/i, m) can be interpreted as the positive principal eigenvalue for the problem

:
V. [e@/myp] 4 ame@/mp —0 in2,  L—0 onog. (A4)

The fact that (A.4) has a positive principal eigenvalue provided that [, me®/#)™ <0 follows from the
arguments in [8]. The relation between A, and the sign of A1 in (A.1) and (A.2) can be stated precisely
as
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LemmaA.2. A <0ifandonly if A, < 1/1.

Lemma A.2 and related results are discussed in [22] and in Theorems 2.5 and 2.6 of [9]. Various
aspects of eigenvalue problems of the type described in this appendix are treated in considerable
generality in [5].
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